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ABSTRACT
Purpose In pharmacokinetic (PK)/pharmacodynamic (PD)
modelling and simulations (M&S), omitting dropouts can cause
inaccuracies in parameter estimation and clinical trial simulations
(CTS). This study examines the impact of different imputation
methods for missing data on the interpretation of model results, as
well as develops a selection model (where dropout and efficacy
are jointly modelled) for use in CTS.
Methods Missing data were imputed using single and multiple
imputation and pattern mixtures methods for a previously report-
ed duloxetine PK/PD model. The probability of dropout was
described in the selection model and CTS was conducted with
a hypothetical drug to examine the impact of dropout on trial
results.
Results The study completion rate was 75% and dropouts were
not random. Model parameters obtained with different imputa-
tion methods were mostly within 40% (range 0 to 63%) com-
pared to the model without dropouts. CTS showed 0.3 points
lower median pain scores and 3% lower coefficient of variation
over the 12-week simulations when dropout was included.
Conclusions Missing data had little impact on the original popu-
lation PK/PD analyses. Sensitivity analyses for dropouts should be
conducted in M&S exercises. The utility of selection models in
CTS was explored via a hypothetical case study.

KEY WORDS Bayesianmethods . dropout . imputation
methods . population pharmacokinetics/pharmacodynamics .
selectionmodel

ABBREVIATIONS
ACMV Available case missing value
b.i.d. Twice daily
bgr Gelman-Rubin convergence
BOCF Baseline observation carried forward
CCMV Complete case missing value
CRD Completely random dropout
Css Concentration at steady state
DPNP Diabetic peripheral neuropathic pain
EC50 Concentration required to achieve 50% of

maximal effect
EMA European Medicines Agency
Emax Maximum effect
FDA Food and Drug Administration
FOCE First order conditional estimation
ID Informative dropout
LOCF Last observation carried forward
MC Monte Carlo
NCMV Neighbouring case missing value
NONMEM Non-linear mixed effects modelling
NRS Numerical rating scale
PD Pharmacodynamics
PK Pharmacokinetics
q.d. Once daily
RD Random dropout
SD Standard deviation
VPC Visual predictive check

INTRODUCTION

Patient dropouts are common and inevitable in the course of
any clinical trial. These can be intermittent dropouts where a
patient has missed visits, or terminal dropouts where a patient
discontinues the trial altogether. The reasons for dropout may
vary, ranging from staff recording error to unacceptable
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adverse events or perceived lack of efficacy. In any circum-
stance, dropouts lead to missing data, and in self-report mea-
surements, such as pain scores, this problem can be more
pronounced since the patient is relied upon to provide data
to inform the endpoint calculations. Analysis of clinical trial
data utilises the intention-to-treat principle, where all collect-
ed information from randomized patients are included.
However in this process missing data can either be ignored
or often imputed using simple methods such as last observa-
tion carried forward (LOCF). These single imputation
methods are not ideal as they may introduce bias when
dropout numbers are substantial and/or when dropouts are
not random (1).

Imputation methods for missing data are usually data-
driven, since they frequently make use of patterns or observa-
tions in the dataset to make inferences or estimate missing
data. Common techniques include single or multiple imputa-
tion and pattern mixture methods. Single imputationmethods
include a variety of techniques such as last observation carried
forward (LOCF), baseline observation carried forward
(BOCF) or mean value substitution. Multiple imputation
methods can generally be divided into explicit techniques,
which use regression models or predictive mean matching,
or implicit techniques, which use data-based methods such as
approximate Bayesian bootstrap (2). Pattern mixture models,
on the other hand, treat the whole population as a mixture of
two or more patterns of dropouts and non-dropouts and
estimates the overall population parameters averaged across
patterns (3).

Whilst imputation methods for handling missing data
are useful in sensitivity analyses for evaluating model
outputs, they do not easily allow simulations from the
model to predict dropout rates and drug efficacy or
disease progression for future trials. For this purpose,
selection models are well suited, since they incorporate
both the drug efficacy and dropout using a joint distri-
bution. Weibull or Gompertz models are commonly
used parametric approaches for describing baseline haz-
ard and survival for dropouts (4). The other common
method to describe dropouts uses logistic models, where the
probability of dropout at a certain time point is modelled
directly using a logit function.

Despite the variety of available methods to handle missing
data, there is currently no clear consensus or standard in
specifying which methods should be used in the various situ-
ations of missing data (5). A report on the subject was commis-
sioned by the Food and Drug Administration (FDA) and
published by the National Academy of Sciences recently
(6,7). In 2001 the European Medicines Agency (EMA) pub-
lished a guidance on points to consider on missing data (8) but
have since revised this to a guidance on missing data in
confirmatory clinical trials, with substantial additions to the
methods section including sensitivity analyses (9). The FDA

guidance on patient reported outcomes suggests two or more
sensitivity analyses with different methods for missing data
imputation (10).

Population PK/PD models are often developed using
only non-missing data, with the occasional exception of
imputation or substitution for concentrations that are
below the limit of quantification. Since dropouts lead to
early censoring of data, the robustness of the analysis and
the conclusions drawn may be affected by missing data,
particularly since in clinical trials, these are typically
non-random. Moreover, when models that do not in-
clude dropout are used for clinical trial simulations,
inaccuracies for protocol design such as misspecification
of sample size may occur (11). Recently, concerns were
raised by the FDA about the amount of missing data in
Rivaroxaban trials for acute coronary syndrome (12),
with the drug subsequently failing to gain approval.
Gomeni et al. (13) have also shown that non-inclusion
of dropout may affect characterisation of placebo re-
sponse. Therefore, if a specific model for dropouts is
not included in the population PK/PD model, it is
important to incorporate sensitivity analyses into the
modelling process, in order to test the effect of missing
data on the final estimated PK/PD parameters. To
overcome these limitations, a selection model is ideal
since it incorporates both dropout and drug efficacy,
and therefore allows further use of the model for simu-
lations in varying circumstances. We have previously
reported a duloxetine PK/PD efficacy model with non-
missing data in the treatment of diabetic peripheral
neuropathic pain (DPNP) (14). This model (henceforth
referred to as the original PK/PD model) described the
pain scores following placebo, 20 or 60 mg once daily
(q.d.) and 60 mg twice-daily (b.i.d.) doses of duloxetine.
Pain scores were recorded over 12 weeks on a 11-point
numerical rating scale (NRS) ranging from 0 to 10. This
paper extends the original analyses, firstly, to evaluate the
impact of missing data on the estimated PK/PD parameters
of the model through the use of varying imputation methods.
Secondly, a selection model is developed to investigate the
randomness of dropout and also to illustrate its utility for
handling further clinical trial simulations.

METHODS

Description of Duloxetine PK/PDModel and Associated
Studies

The original base population PK/PD model was developed
using data from a total of 1,106 patients contributing 12,549
pain scores (out of a theoretical maximum of 13,272 observa-
tions), from four different treatment groups in three different
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studies. Patients received placebo (n=327), 20 mg duloxetine
q.d. (n=110), 60 mg duloxetine q.d. (n=335) or 60 mg
duloxetine b.i.d. (n=334) over 12 weeks. Daily 24 h average
pain scores were collected on the NRS scale, ranging from 0
(no pain) to 10 (worst possible pain), and these scores were
averaged over a week for use as a primary efficacy endpoint.
All patients with baseline NRS pain scores lower than three,
or randomized patients who failed to provide any efficacy
measurements post-treatment were excluded from the analy-
ses. The original base population PK/PDmodel can be found
in Equation 1 and 2. Further details of the model are de-
scribed elsewhere (14), as with the details around the conduct
of each trial (15–17).

Painscoreij ¼ Basei � 1ð þ PEi 1−e− C�time jð Þ� �
þ f dð Þ

� 1−e− Ki�time jð Þ� �
þ εij

ð1Þ

and f dð Þ ¼ Emax;i � Css;i

EC50;i þ Css;i
ð2Þ

where Painscoreij describes the jth pain score of the ith
individual, Basei=pain score at baseline of the ith individ-
ual, PEi=magnitude of placebo effect of the ith individual,
C=first order rate constant describing the onset of placebo
effect, Emax,i=maximum effect of the ith individual,
EC50,i=concentration required to achieve 50% of maximal
effect of the ith individual, Ki=first order rate constant
describing the onset of drug effect of the ith individual,
εij=residual error with a mean of 0 and variance of σ2

and Css,i=duloxetine concentration at steady state for the
ith individual. This was predicted based on individual
demographic parameters using the population PK model
described by Lobo et al. (18), where significant covariates
affecting the PK model were found to be smoking and sex
on bioavailability, age and dose on apparent clearance
and ethnicity on apparent volume of distribution.

Analysis of Dropouts Using Imputation Methods

In the evaluation of dropout using imputation methods, miss-
ing data for each patient included in the dataset used to
develop the original PK/PD model were imputed using three
methods to obtain new complete datasets – simple imputation,
multiple imputation and pattern mixtures. Both intermittent
and terminal dropouts were included in the analyses involving
simple and multiple imputations, whilst the analysis involving
pattern mixtures was carried out using only terminal drop-
outs. Analyses and simulations were carried out using
NONMEM version 6 (19) using the first order conditional
estimation (FOCE) method.

In the simple imputation method, the LOCF technique
was chosen, where the last observation for the individual
patient was carried forward for each missing pain score. The
PK/PDmodel described in Equation 1 and 2 were then fitted
to the new complete dataset. For the multiple imputation
method, five different pain scores were simulated for each
missing data point using the PK/PD model described in
Equation 1 and 2. This resulted in the creation of five new
complete datasets, each containing a mixture of observed and
simulated data (14,378 observations from 1,106 patients in
each dataset). The PK/PD model in Equation 1 and 2 were
then fitted to each dataset producing five unique set of PK/
PD parameter estimates. These were subsequently averaged
to obtain one set of pooled model parameter estimates. The
variance of each parameter estimate (Vβ) was computed ac-
cording to Equation 3 and 4 (2):

V β ¼ U β
−−þ 1þ 1

M

� �
� Bβ ð3Þ

and U β
; ¼ 1

M

X
m¼1
M U β

m;Bβ ¼ 1
M−1

X
m¼1
M bβm−β̄� �2

;

β̄ ¼ 1
M

X
m¼1
M bβ m;U β

m ¼ Var bβm� �
ð4Þ

where U β = pooled within imputation variance, M=no. of
imputations (5 in this case), Bβ = variance of estimates (be-
tween imputation), bβm = parameter estimates (within impu-
tation), β= pooled estimates and Uβ

m = variance of estimates
(within imputation).

For the pattern mixtures models method, three cases were
investigated – complete case missing value (CCMV), available
case missing value (ACMV) and neighbouring case missing
value (NCMV). In order to limit the number of possible
patterns, all intermittent dropouts were excluded from these
analyses, leaving a total of 12 possible patterns depending on
when the patient dropped out from the trial (Table I, top half).
Since some patterns contained too few patients to inform the
PK/PD models (for example, there were no patients in pat-
tern 2 in the placebo and 20 mg q.d. groups), several patterns
were combined and collapsed into groups (3). For these rea-
sons and the purposes of further analyses in all pattern mixture
cases, patterns A to E (Table I, bottom half) are used rather
than the individual patterns 1 to 12. For the CCMV case, the
PK/PD model described in Equation 1 and 2 were fitted to
the data from pattern A. The resulting model parameters
were then used to simulate five different pain scores for each
missing data point in patterns B to E, resulting in five new
complete datasets. For the ACMV case, the PK/PD model
described in Equation 1 and 2 were fitted in turn to data from
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pattern A, patterns A+B, patterns A+B+C and patterns A+
B+C+D. This resulted in four different sets of PK/PD pa-
rameter estimates (arbitrarily named models 1 to 4 in the
above order). Parameters from model 1 were used to simulate
five values for each missing data point in pattern B, whilst
parameters frommodel 2 were used to simulate five values for
each missing data point in pattern C and so on. At the end of
the process, five new complete datasets were again obtained.
For the NCMV case, the PK/PD model described in
Equation 1 and 2 were now fitted in turn to data from each
of the patterns A, B, C andD. Imputation for missing data was
generally carried out using models fitted to data from
neighbouring patterns, resulting in five new complete datasets.
The details of the patterns used for model fitting and simula-
tions in each of the above cases are described in Table II. All
simulations were carried out using 5 iterations with the same
seed number. For each of the five new complete datasets from
each pattern mixture subtype (each comprising 13,507 obser-
vations from 1,039 patients), the PK/PD model described in
Equation 1 and 2 were fitted, with resulting parameter esti-
mates averaged and variances calculated as previously de-
scribed for the multiple imputation methods in Equation 3
and 4.

Overall comparison between the various imputation
methods was carried out by means of graphical measures.

The percentage change in PD parameter estimates obtained
from the new models (fitted to datasets with imputed data)
versus the original PK/PD model (fitted to non-missing data)
were plotted. To provide an additional comparison, the orig-
inal PK/PD model was also fitted to a dataset comprised only
of patients who completed the study (827 patients with 10,751
observations).

Table I Possible and combined patterns for pattern mixture methods (intermittent dropouts excluded)

Pattern Week where pain score is available No. of patients with this pattern

0 1 2 3 4 5 6 7 8 9 10 11 12 Placebo 20 mg q.d. 60 mg q.d. 60 mg b.i.d. Total

1 X X X X X X X X X X X X X 244 87 257 237 825

2 X X X X X X X X X X X X 0 0 3 4 7

3 X X X X X X X X X X X 5 2 2 6 15

4 X X X X X X X X X X 1 0 1 0 2

5 X X X X X X X X X 3 5 7 2 17

6 X X X X X X X X 2 0 1 0 3

7 X X X X X X X 9 2 3 5 19

8 X X X X X X 1 2 1 1 5

9 X X X X X 11 0 7 13 31

10 X X X X 5 3 4 4 16

11 X X X 9 1 12 11 33

12 X X 10 4 19 33 66

Combined/Grouped Patterns

A X X X X X X X X X X X X X 244 87 257 237 825

B X X X X X X X X X X X X 5 2 5 10 22

C X X X X X X X X X X 4 5 8 2 19

D X X X X X X X X 12 4 5 6 27

E X X X X X 35 8 42 61 146

Bold underlined crosses denote observations that were not available in all subjects at that week since subjects were combined into patterns where appropriate

Table II Groupings for pattern mixture methods

Method Model derived from non-
missing data in… (number
of patients in pattern)

Used to simulate
missing data in…

CCMV Pattern A (825) Patterns B+C+D+E

ACMV Pattern A (825) Pattern B

Patterns A+B (847) Pattern C

Patterns A+B+C (866) Pattern D

Patterns A+B+C+D (893) Pattern E

NCMV Pattern A (825) Weeks 11–12 in Pattern B

Week 12 in Patterns C+D+E

Pattern B (22) Weeks 9–11 in Patterns C+D+E

Pattern C (19) Weeks 6–8 in Patterns D+E

Pattern D (27) Weeks 2–5 in Pattern E
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Analysis of Dropouts Using Selection Models

In order to identify possible predictors of dropout, the ob-
served survival was first plotted as Kaplan-Meier graphs. Pain
scores of dropouts versus non-dropouts were also plotted by
time to identify the possible dependence of dropout on pain
scores (either previous or predicted at time of dropout).
The dataset used in the selection models included only
terminal dropouts, consisting of 1,039 patients with 13,507
observations.

Logistic regression models were used to model the proba-
bility of dropout using NONMEM version 6 (19). This was
conducted independently of the pain scores model. Model
building started with a baseline dropout probability:

logit Prð Þ ¼ θ1 ð5Þ

and Pr ¼ exp logit Prð Þð Þ
1þ exp logit Prð Þð Þ ð6Þ

where Pr=probability of dropout and θ1=intercept. Po-
tential predictors, including age, time, dose, duloxetine

concentration at steady state (Css), change from baseline
of last observed pain score prior to dropout (YPBSL) and
change from baseline of model-predicted score at time of
dropout (YUBSL), were then added one at a time. If the
objective function decreased by more than 6.63 points (p≤
0.01, df=1) with the addition of each parameter, then the
covariate was retained. In the backward elimination step,
each covariate was removed separately from the model, if
its removal caused an increase in objective function of at
least 10.83 points (p≤0.001, df=1), then it was retained for
the final model. Visual predictive checks (VPCs) for drop-
out were carried out using 100 iterations for each subject
to assess model fits.

In order to determine the influence of dropout on
the drug efficacy model and to support the approach of
separate development of each model, a joint model was
evaluated in WinBUGS Version 1.4.3 (20). The PK/PD
model describing the pain scores (14) was transferred
into WinBUGS with non-informative priors (with the
exception of EC50 which required an informative prior
using mean parameter estimates from the original mod-
el), and had the following structure:

Pain scoreij e normal μij ; σ
2

� �
ð7Þ

andμij ¼ Basei � 1þ PEi 1−e− C�time jð Þ� �
þ Emax;i � Cssi

EC50;i þ Cssi
� 1−e −K i�time jð Þ� �� �� �

ð8Þ

where μij= jth pain score for the ith individual and the other
parameters defined as before in Equation 1. Maximum like-
lihood expressions for Bayesian methods can be further found
in Lunn et al. (20) and Best et al. (21).

The dropout model was first developed separately, before
being combined with the pain scores model, with the following
structure:

logit Prð Þ ¼ θ1 þ θ2 � exp −θ3 � timeð Þ þ θ4 � Painscoreij−Base
� 	

ð9Þ

andPr ¼ exp logit Prð Þð Þ
1þ exp logit Prð Þð Þ ð10Þ

where Pr=probability of dropout, θ1=intercept, θ2 and
θ3=parameters associated with time and θ4=parameter asso-
ciated with the change from baseline model-predicted score at
time of dropout.

Two sets of priors for θ1 to θ4 were investigated to test the
sensitivity of the model to priors. The first set consisted of
informative priors (using parameter estimates and standard
errors from the original model): θ1~normal (−4.38, 0.063); θ2
~normal (3.77, 0.797); θ3~normal (0.38, 0.02) and θ4~nor-
mal (0.0787, 0.002). The second set comprised of non-
informative priors where θ1 to θ4~uniform (0, 10,000). Two
iteration chains with different initial starting values were used
and sufficient numbers of iterations performed until
convergence was achieved. This was inspected by a
number of visual and diagnostic checks, including visual
examination of history plots (which should show a snake-
like appearance) and Gelman-Rubin convergence (bgr)
diagnostic plots. In the latter, the green line and blue
lines show the width, and average width, respectively, of
80% intervals of pooled chains and should be stable,
whilst the red line shows the ratio of pooled/within and
should be close to 1. In addition, the resulting Monte
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Carlo (MC) error should be 5% or less of the posterior
standard deviation (SD).

In order to illustrate a potential application of selectionmodels
in clinical trial simulations, predictions were performed for var-
ious doses of a hypothetical drug Z. The drug is assumed to be at
the end of Phase 1 development and has a similar indication for
pain in patients with DPNP. Table III shows the model param-
eters and its associated source/assumptions for this hypothetical
drug. The aim was to evaluate the pain score profiles of various
dose levels in a dose-ranging proof of concept study. PK and PD
parameters, together with their pain score profiles were generat-
ed for 200 patients according to the mean and variance values
described in Table III using Matlab version 2007b (The
MathWorks Inc., Natick, MA), at dose levels 0, 2.5, 10, 20, 40
and 60mg q.d. (40 subjects per dose level). The dropouts for each
subject were then simulated in NONMEM, with the simulated
pain scores changed to missing following a subject dropout. The
resultant median pain scores with 80% prediction intervals for
each dose level were plotted.

RESULTS

Summary of Dropouts

The percentage and reasons for dropouts across the three indi-
vidual trials are shown in Table IV. The overall completion rate

across the 3 studies was approximately 75%, with rates of at least
60% for every treatment arm across all studies. In each trial, 12%
or more of patients discontinued from the 60 mg q.d. and b.i.d.
arms due to adverse events, whilst in the placebo and 20 mg q.d.
treatment arms, this figure was 7% or less. For lack of efficacy,
placebo arms in each study had the highest discontinuation rates,
ranging from 1 to 6%.

Mean pain scores of dropouts versus non-dropouts by week
are shown in Fig. 1 and Kaplan-Meier graphs of dropouts
grouped by various potential predictors are shown in Fig. 2.
These figures show that the possible predictors of dropout
may include dose (or Css) and/or age, and that dropouts
appeared to have higher pain scores than non-dropouts, thus
highlighting a possible dependency of dropout on previous
scores and/or unobserved missing scores.

Comparison of Imputation Methods for the PK/PD
model

Pharmacodynamic parameter estimates and their associated
standard deviations/errors obtained from fitting the original
PK/PD model to the imputed datasets from each described
method are shown in Table V. The corresponding percentage
change in parameter values from the original PK/PD model
are shown in Fig. 3, and simulations of typical pain score
profiles using parameters obtained from the different methods
of imputation are shown in Fig. 4. Across the different impu-
tation methods, the model parameters Base, Emax, PE and K
were largely similar. The parameter which varied most be-
tween the different imputation methods was EC50, with the
completers, multiple imputation and pattern mixtures models
showing approximately 30–60% lower EC50 estimates than
the original model. In general, between subject variabilities
and residual errors were largely similar across the various
models. Overall, the various methods used to impute missing
data produced similar PD parameter estimates, largely within
40% of the original PK/PD model. All new model estimates
were within 2-fold of the original model, and the simulations
of typical pain score profiles using the various new model
estimates did not show any visible difference to pain score
profiles.

Analysis of dropouts Using A Selection Model

In agreement with the graphical assessment, the final logistic
regression model developed for dropout showed that the
probability of dropout was only dependent on time and the
previous observed pain score (YPBSL) prior to dropout. Final
model estimates obtained from NONMEM are shown in
Table VI with the model fits and 90% prediction intervals
for a few YPBSL values presented in Fig. 5.

For the joint-efficacy and dropout modelling in
WinBUGS, convergence was deemed satisfactory after

Table III Model parameter assumptions for hypothetical drug Z

Parameter Assumption Mean value (sd)

Pharmacokinetics

CL/F (L/h) From healthy volunteer data 30 (9)

Pharmacodynamics

Base Similar to duloxetine 5.74 (1.72)

PE Similar to duloxetine −0.0994 (0.03)

C (week−1) Similar to duloxetine 0.289 (0.09)

Emax Similar to duloxetine −0.576 (0.17)

EC50 (ng/mL) 50% more potent than duloxetine
from animal models

11.8 (5.9)

K (week−1) 20% faster onset than duloxetine
from animal models

0.53 (0.159)

Dropout model

θ1 Similar to duloxetine −4.25

θ2 Similar to duloxetine 3.50

θ3 Similar to duloxetine 0.377

θ4 Similar to duloxetine 0.152

sd standard deviation, CL/F apparent plasma clearance of drug after extravas-
cular administration, Base pain score at baseline, PE magnitude of placebo
effect, C first order rate constant describing onset of placebo effect, Emax
maximum effect, EC50 concentration for one-half the maximum effect, K first
order rate constant describing onset of drug effect, θ1 intercept, θ2 and θ3
parameters associated with time and θ4 parameter associated with the change
from baseline score prior to dropout
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35,000 iterations with the first 5,000 iterations discarded for
the PK/PD model describing the pain scores only. For the

dropout model, this took 40,000 iterations with the first
20,000 iterations discarded (non-joint models). For the joint

Table IV Percentage and Reasons
for Dropout Across the 3 Trials Study Treatment Completion

rate (%)
% of patients who
completed 6 weeks
of trial

Reason for discontinuation (%)

Adverse
event

Lack of
efficacy

Others

Wernicke et al. (16) Placebo 69 86 7 6 18

60 mg q.d. 69 85 13 1 17

60 mg b.i.d. 62 81 18 3 17

Raskin et al. (15) Placebo 74 89 3 1 22

60 mg q.d 82 92 4 0 14

60 mg b.i.d. 77 84 12 0 11

Goldstein et al. (17) Placebo 72 84 4 3 21

20 mg q.d. 75 88 4 2 19

60 mg q.d. 73 85 13 1 13

60 mg b.i.d. 70 77 19 2 9

Fig. 1 Mean pain scores for dropouts versus non-dropouts by treatment group.
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efficacy – dropout models, convergence was deemed
satisfactory after 40,000 iterations with the first 12,000,
and 10,000 iterations discarded for the uninformative
and informative priors, respectively. Table VII shows
the priors and posterior distributions for the various
models investigated. MC error/SD calculations, along

with example history and bgr diagnostic plots to assess
convergence can be found in Fig. 6. Regardless of the
set of priors used, all the joint models produced pain
scores model parameter estimates similar to those of the
separate model, with differences of up to 3%. This was
higher for the dropout models where differences of up

Fig. 2 Kaplan-Meier plots of possible predictors against dropout.
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to 54% in model parameters were seen in the joint
models compared to those modelled separately. Some drop-
out parameters estimated using uninformative priors had
larger standard deviations compared to the estimates using
vague or informative priors.

In clinical trial simulations, median and 80% prediction
intervals for each dose level for hypothetical drug Z are shown
in Fig. 7a. A line representing 2 points decrease from baseline
is included in the graph as this has been shown to be associated
with clinically meaningful pain relief (22). The no-effect dose
level was 2.5 mg, and there appeared to be large overlaps in
the 40 and 60 mg doses, suggesting little benefit in increasing
doses beyond 40 mg. The effect of dropout on clinical trials

simulations is further explored at the 20 mg dose level, with
the median and 80% prediction intervals of pain scores at this
dose level shown in Fig. 7b. In this particular example, median
pain scores were up to 0.3 points lower and coefficient of
variation up to 3% lower over the 12-week simulations when
dropout was included.

DISCUSSION

Apopulation PK/PDmodel describing the efficacy of duloxetine
in the treatment of DPNP was previously developed and report-
ed (14). However, not all patients completed the study, and the

Table V Pharmacodynamic parameter estimates from the various methods of imputing missing data

Parameter Original PK/PD
Model [14]

Completers
Only

LOCF Multiple
Imputation

Pattern Mixture
(CCMV)

Pattern Mixture
(ACMV)

Pattern Mixture
(NCMV)

Estimate %SE Estimate %SE Estimate %SE Estimate %SD Estimate %SD Estimate %SD Estimate %SD

Base 5.74 0.8 5.75 0.9 5.75 0.8 5.73 0.8 5.73 0.9 5.7 0.8 5.73 0.8

PE −0.0994 11.2 −0.102 11.8 −0.0752 28.5 −0.121 12.8 −0.11 14.8 −0.125 12 −0.153 14.2

C (week−1) 0.289 9.1 0.288 11.2 0.31 11.9 0.238 12.2 0.216 20 0.177 18 0.227 12.3

Emax −0.576 4.6 −0.565 5 −0.558 9.8 −0.503 7.6 −0.53 7 −0.493 8.2 −0.487 7.8

EC50 (ng/mL) 23.6 23.0 15.5 26.4 23.7 43.5 11.59 29.8 11.6 25.9 9.84 37 14.7 29.2

K (week−1) 0.438 6.2 0.448 6.8 0.495 6.0 0.418 6.7 0.418 6.4 0.422 6.1 0.364 7.9

Between-subject variabilities (%)

Base 23 4.4 23 5.2 24 4 23 5 24 5.3 24 4.9 23 5.6

PE 145 10.8 141 11.7 164 19.7 135 12.3 147 12 144 10.3 111 16.4

Emax 34 15.2 35 16.5 37 24.1 47 30.3 46 27.5 51 30.3 41 28.4

EC50 (ng/mL) 404 16.9 399 18.4 456 29.5 444 22.2 424 18.1 473 24.3 458 22.8

K (week−1) 108 8.3 115 8.2 11 9.8 108 8.6 108 8.4 108 9 11 8.2

Residual error

Additive 0.705 4.9 0.701 5.3 0.661 4.9 0.91 11.3 0.845 11.2 0.851 8.5 1.15 19.7

SE standard error of the estimate, SD standard deviation, Base pain score at baseline, PEmagnitude of placebo effect, C 1st order rate constant describing onset of
placebo effect, Emax maximum effect, EC50 concentration for one half the maximum effect, K 1st order rate constant describing onset of drug effect

Fig. 3 Percentage change from
original PK/PD model for PD
parameter estimates across different
methods for imputing missing data.
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analyses included only non-missing observations from patients.
The aims and objectives of the current analyses were to examine
the influence of different methods for handling missing data, and
how this might affect the results of the original population PK/
PD analyses.

From the observed completion rates in each trial
(Table IV), more patients in the 60 mg treatment groups
(q.d. and/or b.i.d.) discontinued the trials due to adverse events
compared to the placebo and 20 mg q.d. treatment groups.
For lack of efficacy, more patients in the placebo group
discontinued the trials compared to the duloxetine-treated
groups. Together, these suggest that dropouts may not be
entirely random. The observed completion rates of 60
to 80% are consistent with similar DPNP trials (23,24).
Plots of individual parameter estimates of the original
PK/PD model versus reason for dropout (graphs not
shown) also did not reveal any visible trends. This could
be because the numbers of dropouts were relatively
small compared to non-dropouts, and also we have
shown that the dropout model can be developed sepa-
rately from the pain scores model, therefore dropouts
are not expected to have an effect on parameter esti-
mates of the pain scores model.

Fig. 4 Simulations of typical pain score profiles from models using different methods of handling missing data.

Table VI Parameter estimates from logistic dropout model

logit (Pr)=θ1+θ2*exp (−θ3*time)+θ4* YPBSL

Parameter Estimate SE (%)

θ1 (intercept) −4.25 5.69

θ2 (time) 3.50 25.2

θ3 (time) 0.377 40.3

θ4 (YPBSL) 0.152 30.6

SE standard error of the estimate, θ1 intercept, θ2 and θ3 parameters
associated with time and θ4 parameter associated with the change from
baseline score prior to dropout (YPBSL).
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The various methods used to impute missing data produced
similar PDparameter estimates,mostly within 40%of the original
PK/PD model. The completers model had a 34% lower EC50
estimate since the dataset did not include patients who had
dropped out due to lack of efficacy, thus leading to over-
estimation of drug potency. Indeed, complete-case analysis should
not be used routinely, since it ignores all patients with missing
data, but this does not satisfy the intent-to-treat principle as it
does not include all randomized patients (25).

In the LOCF model, EC50 estimates were very similar to
the original PK/PD model, in contrast to common opinion
that LOCF provides a more conservative approach - an issue
which had been previously discussed by Mallinckrodt et al.
(26). This situation is possible since in the duloxetine trials,
observed dropout rate due to lack of efficacy is minimal
compared to those of other reasons or adverse events. It is
intuitively expected that LOCF would be a worst case scenar-
io analysis only if a substantial number of patients dropped out
of the trial due to lack of efficacy. In fact, in the current
analyses, LOCF was the only imputation method where all

the parameters were within the 40% boundaries from the
original PK/PD model (Fig. 3). This brings into question the
appropriateness of LOCF as a conservative method, which is
an approach that has been regularly expected by regulatory
authorities for submissions. Molnar et al. (27) have suggested
that regulatory agencies should re-consider accepting analyses
based on the LOCF approach since it has been shown to be
biased. The main drawback of simple imputation methods
such as LOCF lies in the underestimation of variance and thus
overstating precision, plus the assumption that data are not
missing at random (28,29).

The multiple imputation and pattern mixtures methods
used five imputed datasets since the use of more than 5 to
10 imputations provide little extra benefit unless rates of
missing information are unusually high (30). Across the pat-
tern mixture methods, although the estimates and variabilities
were largely comparable, those from NCMV had a larger
residual error. This could be due to the fact that imputation
using the NCMV method was less robust, since a fairly large
proportion of missing data were imputed from models fitted

Fig. 5 Observed probabilities with 90% prediction intervals for a few YPBSL values.
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using data from fewer than 150 patients. In contrast, the ACMV
andCCMVmethods involvedmissing data imputed frommodel
estimates derived from analyses of at least 825 patients.

Selection models have an important advantage over impu-
tation methods for missing data, since they allow characteri-
sation of the randomness of dropout and the models to be
used for clinical trial simulations. It has been noted that
models that do not include dropout in clinical trial simulations
may not fully capture the observations (11). Thus, in order to
accurately reproduce the clinical trial results, or simulate with
better predictive capabilities for future trials, it is therefore
necessary to describe the effect of drug efficacy/disease pro-
gression on the probability of dropout and vice versa.

Logistic models were chosen to model dropout in these
analyses since they offer greater flexibility for inclusion of

many predictors at a time and have shorter run times
(31,32). Besides, they also provide an output that may bemore
intuitive and understandable for non-pharmacometricians or
statisticians. Hazard models have the advantage of taking into
account interval censoring and are more parsimonious, but
also require longer run-times when modelling. The results for
the logistic model showed that the probability of dropout was
only dependent on time and previous observed pain score
prior to dropout. Addition of the latter as a predictor caused
a larger drop in objective function value compared to the use
of unobserved missing pain score at time of dropout as a
predictor. This is consistent with the plots of mean pain score
between dropouts and non-dropouts (Fig. 1), where dropouts
tended to have a higher pain score compared to trial com-
pleters. Dropouts in clinical trials are rarely completely

Table VII Parameter estimates from Joint Models (WinBUGS).

Model
Type

Separate modelling of Pain scores
and dropout

Joint model Uninformative priors Joint model Informative priors

Parameter Priors Posterior mean (SD) Priors Posterior mean (SD) Priors Posterior mean (SD)

Pain scores model

Base Unif (0,100) 6.02 (0.05) Same as separately-
developed Pain
model

6.02 (0.05) Same as separately-
developed Pain
model

6.02 (0.05)

PE Unif (0,100) −0.301 (0.01) −0.301 (0.01) −0.301 (0.01)

C Unif (0,100) 0.246 (0.01) 0.246 (0.01) 0.247 (0.01)

Emax Unif (0,100) −0.393 (0.02) −0.392 (0.02) −0.392 (0.02)

EC50 Norm (23.6, 29.4) 34.5 (4. 9) 34.0 (4.9) 33.8 (4.9)

K Unif (0,100) 1.07 (0.07) 1.08 (0.07) 1.07 (0.07)

IIV Base Unif (0,100) 148% 148% 148%

IIV PE Unif (0,100) 24% 24% 24%

IIV Emax Unif (0,100) 25% 25% 25%

IIV EC50 Gamma (0.1,0.1) 1,280% 1,250% 1,240%

IIV K Unif (0,100) 53% 53% 53%

Dropout model

θ1 Norm (0,10,000) −4.34 (0.3) Norm (0,10,000) −4.34 (0.5) Norm (−4.38,15.9) −4.27 (0.3)

θ2 Norm (0,10,000) 4.71 (2.0) Norm (0,10,000) 5.91 (8.0) Norm (3.77,1.25) 4.24 (1.5)

θ3 Norm (0,10,000) 0.471 (0.2) Norm (0,10,000) 0.544 (0.3) Norm (0.380,48.9) 0.479 (0.2)

θ4 Norm (0,10,000) 0.0848 (0.05) Norm (0,10,000) 0.131 (0.05) Norm (0.0787,531) 0.129 (0.05)

Residual error Gamma (0.1, 0.1) 0.745 (0.009) Gamma (0.1, 0.1) 0.735 (0.008) Gamma (0.1, 0.1) 0.735 (0.008)

Unif uniform distribution, norm normal distribution, IIV interindividual variability, Base pain score at baseline, PE magnitude of placebo effect, C 1st order rate
constant describing onset of placebo effect, Emaxmaximum effect, EC50 concentration for one half the maximum effect, K 1st order rate constant describing onset
of drug effect, θ1 intercept, θ2 and θ3 parameters associated with time and θ4 parameter associated with the unobserved change from baseline score at time of
dropout

Fig. 6 Example bgr (a) and history
(b) plots to assess drug efficacy/
dropout model convergence in
WinBUGS.
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random, since in reality, adverse events or lack of efficacy
often lead patients to discontinue clinical trials.

In the investigation of joint models for non-linear longitu-
dinal data with informative dropout, Hu and Sale (11) de-
scribed missing data as completely random (CRD), random
(RD) or informative (ID). Dropout is CRD when it is inde-
pendent of observed and missing data, RD when it is depen-
dent on observed data, and ID when it is dependent on
missing data. Under CRD and RD, the dropout likelihood
and the disease progression likelihood can be optimised sepa-
rately, whereas under ID, the dropout and disease progression
should be modelled together since they contain information
about each other. However, it has also been shown that a
sufficiently high observation density can justify a sequential
rather than a joint modelling approach of PKPD and dropout
data (33). Others have also shown it is often adequate to
assume that the conditional hazard of dropout between the
ith and (i+1) th time points, given Y at times prior to and

including the ith, depends only on the score Yi (34). Therefore,
in order to determine the influence of dropout on the drug
efficacy model and to support the modelling approach of
separate dropout/drug efficacy model development, a joint
model was built and compared to the previous results from
separate modelling. This joint model was developed under a
Bayesian framework since it is a natural way to handle shared-
parameter models (29). The pain score and dropout model
parameters used mainly uninformative priors since this would
mirror the nonlinear mixed effects estimation methods.
However, forEC50, an informative prior was required in order
for the model to be stable, possibly due to the large inter-
individual variability originally observed for this parameter
(14). The results showed that the use of informative or unin-
formative priors for dropout models produced similar param-
eter estimates for both the pain score and dropout models.
Higher uncertainties in parameter estimation with the unin-
formative priors were observed, which is consistent with cur-
rent knowledge that dropout data provide little information
for estimating dropout model parameters, thus informative
prior distributions may be necessary (21). The results of the
joint modelling exercise support the use of separate models for
dropout and drug efficacy in this particular analysis of drop-
outs and duloxetine drug efficacy in DPNP, in concordance
with reported literature for other drugs (33,34).

A simple case study was presented to illustrate the utility of a
selectionmodel in clinical trial simulations. This was to satisfy the
main aim of illustrating how a joint efficacy-dropout model can
be used for simulations as opposed to imputation methods for
describing dropout which cannot perform a similar task. In
reality, these simulations can be made simpler or more compli-
cated depending on data availability and current stage of drug
development. Lockwood et al. (35) have used a similar approach
for clinical trial simulations using data from gabapentin for
pregabalin clinical trial simulations in chronic neuropathic pain.
However dropouts were not included in those clinical trial sim-
ulations. In our example, failure to include the dropouts would
have caused a slight over-estimation of variability and underes-
timation of drug efficacy. Although minor, these would have
potential implications in calculations of sample sizes required to
detect significant changes in pain scores when designing future
clinical trials. The sensitivity of the trial outcome to dropouts can
also be investigated with these models by changing the dropout
rate.

CONCLUSION

In summary, for the analyses on impact of missing data using
imputation methods, the relative change in PK/PD parame-
ter estimates from models fitted to different imputed datasets
showed that most were within 40% of the original PK/PD
model. These support the fact that at the current observed

Fig. 7 Simulations for various dose levels for hypothetical drug Z (a) and
simulations for 20 mg dose with and without dropout (b) (N=40 per dose
level).
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overall trial completion rate of approximately 75%, missing
data had relatively little impact on the original PK/PD anal-
yses. It is uncertain, however, if these conclusions would
remain should there be an increase in the percentage of
missing data. It is therefore important, that sensitivity analyses
be conducted to test the effect of dropout on the estimated
PK/PD parameters in modelling exercises, since these ap-
proaches frequently only include non-missing data. Whilst
these imputation methods can be useful in sensitivity analyses
for determining appropriate choices for handling missing
data, they however do not easily facilitate simulations and
prediction of dropout in future trials. Selection models, on
the other hand, are best poised to handle these situations,
including investigation of the randomness of dropout. The
selection model developed for duloxetine in DPNP has shown
that the dropout mechanism for these trials was random, ie.
dependent on previous observed pain score prior to dropout.
Also, the logistic model for dropout included separate com-
ponents for the different reasons for dropout, and finally, the
advantage of selection models in clinical trial simulations was
highlighted via a hypothetical case study.
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